The CARD plays a critical role in ASC foci formation and inflammasome signalling.
نویسندگان
چکیده
The ASC (apoptosis speck-like protein) is a key component of multimeric protein complexes that mediate inflammation and host defence. Comprising a PYD (Pyrin) domain and a CARD (caspase activation and recruitment domain), ASC functions downstream of NLRs (nucleotide-binding domain, leucine-rich repeat-containing receptors) and AIM2 (absent in melanoma 2) through the formation of supramolecular structures termed inflammasomes. However, the mechanism underlying ASC signalling and its dependency on oligomeric arrangements in inflammasome formation remain poorly understood. When expressed in cells, ASC forms discrete foci (called 'specks') typically with one speck per cell. We employed a BiFC (bimolecular fluorescence complementation) system to investigate and visualize ASC foci formation in living cells. We demonstrated that the CARD of ASC plays a central role in ASC inflammasome assembly, representing the minimal unit capable of forming foci in conjunction with the caspase 1 CARD. Mutational studies point to multiple surfaces on the ASC CARD and two predominant areas on the caspase 1 CARD mediating the formation of ASC/caspase 1 foci. The lack of foci formation for ASC CARD mutants correlates with a loss of IL-1β (interleukin 1β) processing in response to NLRP (NLR family, PYD domain-containing) 3 or AIM2 agonists in RAW264.7 cell reconstitution assays. Analogously, we show that productive formation of the Salmonella typhimurium-induced NLRC4 (NLR family CARD domain-containing protein 4) inflammasome is dependent on ASC-CARD-mediated platform formation. Thus the results of the present study depict a central role of CARDs in the formation of ASC signalling platforms and provide an important tool for investigation of CARD-dependent networks.
منابع مشابه
A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly
Myeloid cells assemble inflammasomes in response to infection or cell damage; cytosolic sensors activate pro-caspase-1, indirectly for the most part, via the adaptors ASC and NLRC4. This leads to secretion of proinflammatory cytokines and pyroptosis. To explore complex formation under physiological conditions, we generated an alpaca single domain antibody, VHHASC, which specifically recognizes ...
متن کاملASC filament formation serves as a signal amplification mechanism for inflammasomes
A hallmark of inflammasome activation is the ASC speck, a micrometre-sized structure formed by the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD), which consists of a pyrin domain (PYD) and a caspase recruitment domain (CARD). Here we show that assembly of the ASC speck involves oligomerization of ASC(PYD) into filaments and cross-linking of these f...
متن کاملP 106: Effects of Dimethyl Sulfoxide on NLRP3 Inflammasome and Alzheimer\'s Disease
Alzheimer's disease (AD), the most ordinary form of dementia and extracellular accumulation of Amyloid-β (Aβ) in senile plaques, is an important and a main event in the pathogenesis of AD. Deposition of Aβ Peptide initiates a spectrum of cellular responses that are interposed by the resident neuroimmune cells of the brain, the microglia. Recently, a novel inflammasome signaling&n...
متن کاملDynamics of ASC speck formation during skin inflammatory responses in vivo
17 Activated danger or pathogen sensors trigger assembly of the inflammasome adaptor ASC into 18 specks, large signalling platforms considered hallmarks of inflammasome activation. Because a 19 lack of in vivo tools has prevented the study of endogenous ASC dynamics, we generated a live 20 ASC reporter through CRISPR/Cas9 tagging of the endogenous gene in zebrafish. We see strong 21 ASC express...
متن کاملInflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis.
West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. The WNV-induced innate immune response, including production of antiviral cytokines, is critical for controlling virus infection. The adaptor protein ASC mediates a critical step in innate immune signaling by bridging the interaction between the pathogen recognitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 449 3 شماره
صفحات -
تاریخ انتشار 2013